




Bohning et al. 1998; Baudewig et al. 2001; PET: Fox et al.
1997; Laird et al. 2008; Paus et al. 1997; and SPECT: Okabe
et al. 2003). Our results extend this literature by providing
evidence that the time course of the cortical response to a
single pulse of TMS is sufficiently long (�700 ms) to impact
multiple cognitive functions and that stimulating one region of
cortex has broad impact on a network of brain areas. Critically,
by showing that the responses have a complex interaction with

stimulation intensity, we argue that our measurements reflect
TMS-induced cortical oscillations, rather than endogeneous
activity.

Site Specificity of Single-Pulse TMS

TMS induces responses in networks that depend on the
stimulation site. The correlation analyses as well as the raw
evoked potential showed site-specific and large network oscil-

Fig. 6. Stimulation intensity engages different cortical networks. A: spatial patterns for each stimulation intensity at the time points of interest. Different cortical
networks are engaged at different stimulation intensities. B: regions of interest (ROIs) were chosen based on the spatial pattern across stimulation intensities,
corresponding to an occipital region at the site of stimulation, a parietal region, and a frontal region. Evoked potential estimate within these ROIs show that some
networks scale linearly (occipital, RV1 stimulation), and other regions have an optimal stimulation intensity (parietal/frontal). C: power estimates 300–400 ms
after stimulation as measured by wavelet coefficients of the evoked potential.
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lations unique for each stimulation site. The implication is that
the entire network of brain regions engaged by TMS is depen-
dent on connectivity of that site to the rest of the brain. For
visual cortex stimulation, we observed a theta-band oscillation
in occipital and parietal cortex, with the specific spatial distri-
bution depending mainly on the hemisphere of the stimulation
site. We also observed stimulation over the more VT site to
engage additional ventral cortical areas.

Most striking in these findings were the mirrored spatial
distributions for stimulation of corresponding cortical sites
(e.g., left and right V1) of each hemisphere where the elicited
parietal activity was always contralateral to the stimulation
site, and this effect is only dependent on hemisphere of stim-
ulation rather than any specific stimulation site in visual cortex.
Also, the activity near the site of stimulation was negatively
correlated across hemispheres. These oscillations were appar-
ent at 40 ms and had a time course that spans �500 ms. The
strong hemispheric structure of the observed responses is
perhaps not so surprising, since the three nodes of the visual
system that we stimulated are heavily interconnected and part
of an integrated system with common targets in parietal and
frontal cortex.

Interestingly, there were few occipital regions that show
significant differences between stimulation sites; the most
striking differences may be the comparison between the MT
stimulation and VT stimulation. MT stimulation resulted in a
very low amplitude response, where VT stimulation resulted in
widespread high magnitude responses, especially throughout
lateral occipital cortex. hMT�, the human homologue to mon-
key MT, has been the subject of study for decades, and its
response to visual information is determined by several prop-
erties of the stimulus, including size, speed, direction, location,
and binocular disparity (for review, see Born and Bradley
2005). The VT region, overlapping with the lateral occipital
complex, is less clearly mapped. VT cortex is known to be
involved in object recognition (e.g., Grill-Spector et al. 2001),
visual categorization (Thompson-Schill et al. 1999), and object
learning (Op de Beeck et al. 2006). Whereas MT is a relatively
small brain area engaged early in perceptual processing, the
lateral occipital complex is a large, heterogenous region with a
range in tuning to natural objects and invariances to low-level
properties of the visual scene. This complexity would imply a
need for greater connectivity across the cortex, especially
lateral occipital and temporal cortex, as we have observed.

In contrast to the great deal of similarity of the occipital and
parietal responses to the three stimulation sites of each hemi-
sphere, we observed frontal and prefrontal responses that
depended strongly on the stimulation site primarily driven by
responses to VT stimulation. Thus we find evidence of distinct
large-scale functional connectivity of VT to distinct frontal and
prefrontal targets.

Site-Invariant Networks

The first site-invariant network we observed is the periodic
signal suggested by the spatial correlations in Fig. 4. The
periodic signal beginning 116 ms after TMS emerges on the
fall of the TMS-EP and has a spatial distribution reminiscent of
the P300 often observed in visual oddball studies (Sutton et al.
1965); however, the timing of this periodic signal is inconsis-
tent with the P300, which is not repeated, as is shown here at

116 and 292 ms. Instead, this periodic signal is quite unique to
TMS. Similar in spatial pattern is the increased power within
the theta band observable 300 ms after TMS for all of the
stimulation sites (Fig. 5). A stimulation site-invariant alpha
oscillation also appeared following the pulse. With the timing
alone, it may be suggested that these oscillations could reflect
an endogeneous theta/alpha rebound, as typically observed
several hundred milliseconds after a visual stimulus following
alpha blocking (e.g., Sauseng et al. 2005). However, our
intensity varying analysis does not support this interpretation.
There is no explanation that would purport an alpha oscillation
to peak with an E field of 270 V/m, rather than the highest
intensity tested or no variability at all.

The simulation-site invariant responses provide further evi-
dence of the global origins of many scalp EEG signals (Nunez
2000; Nunez and Srinivasan 2006). The cortex is characterized
by extensive connectivity by white-matter (corticocortical and
callosal) fiber systems that are both specific and diffuse (Brait-
enberg and Schuz 1991; Nunez 1995). These fiber systems
create large-scale neuronal networks, which are believed to
give rise to large-scale coherent oscillations such as spatially
coherent alpha rhythm, observable over the whole head with
EEG electrodes. Mathematical models suggest that these os-
cillations emerge from the delays imposed by the white-matter
connectivity (Nunez 2000; Nunez and Srinivasan 2006) rather
than intrinsic properties of the cortical circuits. TMS at one site
is propagated to many cortical regions via corticocortical and
callosal fiber systems over the cortex and apparently engages
global oscillatory modes in theta and alpha bands.

Previous TMS-EEG studies have also found an alpha-band
oscillation following TMS to occipital and parietal cortex.
Through neural entrainment with repetitive (r)TMS, enhance-
ment of this alpha network has even been found to be behav-
iorally relevant, modulating visual input processing (Romei et
al. 2010) and improving working memory capacity (Sauseng et
al. 2009). Single pulses of TMS have also previously been
found to elicit alpha activity with occipital stimulation (Rosa-
nova et al. 2009). Our results are consistent with the engage-
ment of these alpha band networks.

Complex Interaction with Stimulus Intensity Suggests
Functional Network Responses at Distant Sites

Although previous researchers have used intensity indepen-
dence as a diagnostic for an endogenous mechanism, other
factors such as the sensation of the pulse on the scalp or the
auditory evoked response may also linearly scale with inten-
sity. Our results show that brain regions distal to the stimula-
tion site do not have a monotonic response to stimulation
intensity. It is known that TMS affects only a subset of neurons
at the site of stimulation due to orientation or cycle of the
refractory period (Fitzpatrick and Rothman 2000); however,
the synaptic interactions are yet unknown. It seems plausible
that a change in stimulation intensity increases the probability
that electrical current of the induced field will cause an action
potential. If a “distant” network connected to the stimulation
site is engaged when large assemblies of neurons are active
within the stimulation site, then an increase in stimulation
intensity will more likely engage this functional network. It
should be noted that distant in the brain is actually not very
distant at all. It has been shown that a single synapse may reach
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every other neuron in the brain in relatively few hops or jumps,
reminiscent of a small world network (Bassett and Bullmore
2006).

If the probability of a neuron firing increases with stimula-
tion intensity, then this alone would predict that higher stim-
ulation intensity will engage larger networks with an increasing
electrical field; however, we also know that the brain has
compensatory mechanisms and inhibitory networks that may
also be engaged, suppressing some networks and enhancing
others. The complex excitation/inhibition interactions within
the brain could act as gates, blocking the synthetic visual
system response when engaged by a specific stimulation inten-
sity or allowing its spread at another stimulation intensity.

Hemispheric Asymmetries

Interestingly, our results show asymmetries within both the
magnitude of the evoked potential (compare left and right VT)
and also the ANOVA comparing each region constrained to
only one hemisphere, where the right hemisphere stimulation
sites appear to be more homogenous than the left hemisphere
stimulation sites. While hemispheric asymmetries are the hall-
mark of several cognitive phenomena (e.g., orienting in spatial
attention), we have no a priori reason to expect lateralization in
the connectivity from early visual cortex or extrastriate areas of
the visual system. Moreover, we found that the resulting
oscillations from TMS had more power when applied over the
right hemisphere of any given stimulation site. This could
reflect higher connectivity of the right hemisphere regions to
the rest of the brain compared with the left hemisphere or
simply that the anatomical characteristics of the regions stim-
ulated in the left hemisphere were not as optimal (e.g., relative
to coil orientation) to elicit the highest response possible. As
has been proposed for cortical regions responsible for language
comprehension and production, the differences observed could
reflect differences in the functional connectivity of left and
right visual cortex (Hustler and Galuske 2003).

Implications in psychophysical studies of TMS

It has been known for more than a decade that single pulses
of TMS applied to visual cortex may disrupt processing on a
particular task (e.g., letter identification, Corthout et al. 1999;
motion discrimination, Hotson and Anand 1999). It has also
been shown that the time course of such impairments is quite
complex (Laycock et al. 2007) and depends on the site of
stimulation. Our results speak to these psychophysical inves-
tigations of visual processing in several ways. First, it should
be noted that these psychophysical studies do not explicitly
rely on the virtual lesion hypothesis. Rather than declaring a
specific brain region task relevant, we can interpret their
findings to declare that brain networks engaged by stimulating
the specific brain region are task relevant. While conducting a
psychophysical investigation of visual processing, researchers
have declared a stimulation region to be task relevant when the
behavioral effect is present when stimulating one region over a
nonrelevant control region. Our results suggest that the use of
vertex stimulation results in an entirely distinct evoked poten-
tial that does not engage occipital or parietal cortex for �200
ms following stimulation. However, given our results and the
high probability of cross-talk between brain regions, it seems
unreasonable to perfectly find two nonoverlapping networks in

time and space. This suggests that contrasts between stimula-
tion sites that are functionally connected (e.g., V1/VT or
V1/MT) are complex to interpret because they engage both
common and distinct cortical networks.

Psychophysical research using single-pulse TMS over visual
areas of the brain often uncovers multiple windows in time for
which TMS impacts performance, both before (�100 ms)
stimulus onset and well after (�100 ms) stimulus onset (e.g.,
Hotson and Anand 1999). In an attempt to understand these
temporal dependencies, dynamic theories of visual processing
argue that awareness is strongly influenced by the feedback
component of visual analysis (e.g., Lamme and Roelfsema
2000). Pascual-Leone and Walsh (2001) hypothesized that the
feedforward and feedback processes of visual analysis could be
explored by phosphene induction (bright flashes of light in-
duced by TMS over visual cortex). Their results suggest that
backprojections from MT to V1 are necessary for awareness of
moving phosphenes, and they speculate that reentry of infor-
mation (Edelman 1989) may be a general principle of visual
awareness (Pascual-Leone and Walsh 2001). The correlations
shown here, however, would suggest that time points of 40,
200, and 385 ms would have maximal differentiation between
stimulation sites and time points corresponding to 116 and 292
ms would have little difference across stimulation sites. Based
on the amplitude of the TMS-EP, we would predict the max-
imal behavioral impact to be very shortly after the pulse,
perhaps at 40 ms. On the basis of these findings, we suggest
that it may be possible to use both time and space in generation
of a psychophysical control for TMS studies. An ideal study to
test the reliance of a brain area on a task would have at least
two “visual” brain regions (and a vertex control) and two time
points of test. With our results, we would predict two sites
would produce the common psychophysical effects at 116 ms
and may be compared with the results at 40 ms, producing the
effect size at the region of task interest that is not a general
impact of TMS (116 ms) but still different across sites (40 ms).
Future research will assess whether the oscillations found here
are behaviorally relevant and align with the multiple time
windows of processing these psychophysical studies often
report.

Generality of Our Results to Other Stimulation Protocols

Our results have been based on single pulses of TMS from
a monophasic coil. It is yet unknown what effects a rTMS or a
biphasic coil will have on the TMS-induced oscillations re-
ported here. rTMS sends single trains of TMS pulses very
quickly at a region of the cortex. It seems reasonable to
speculate, however, that the frequency of the pulse will interact
with the global networks reported here in very specific ways
and show a significant tuning to rate of stimulation with rTMS.
With similar reasoning, rTMS has been paired with a 10-Hz
flickering stimulus that entrains neurons and results in a brain
response at the flicker frequency (Johnson et al. 2010). These
researchers show that rTMS biases task-related activity, inter-
acting with the networks created by neuronal entrainment.

Further, the monophasic coil induces a current in only one
direction, while a biphasic coil induces a sinusoidal current.
The difference between biphasic and monophasic TMS is
becoming increasingly studied (Corthout et al. 2001; Kammer
et al. 2001; Niehaus et al. 2000; Arai et al. 2007) but is much
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more prominent in the rTMS literature. It seems reasonable to
assume that a biphasic coil will have effects on the results
shown here. It has been shown behaviorally that a monophasic
coil has a larger effect on the motor evoked potential than a
biphasic coil (Arai et al. 2005). Given the variable responses
due to intensity of stimulation as well as region stimulated, it
seems likely that a biphasic TMS pulse will also create un-
known interactions with the reported networks. Future research
is needed to determine the relationship between the local/
global oscillations reported here and coil type.

Mechanisms of TMS

A recent surge in publications has attempted to uncover the
inter-regional effects of single pulse TMS (Ruff et al. 2006).
Most studies that have used concurrent neuroimaging devices
have shown a nonlocalized effect of TMS, and our results
provide more evidence for this nonlocal interpretation of the
mechanism of TMS. We find that TMS engages multiple
networks of brain regions in at least two different frequency
bands, most likely reflecting the underlying connectivity of that
brain region to multiple brain networks. Contrary to common
assertions in the application of TMS, the effects of TMS are
not very local at all.

Most recently, the virtual lesion hypothesis has been chal-
lenged by several researchers who believe TMS is not simply
injecting noise into the brain system impacted by the magnetic
field but instead traces the resonant frequency of the brain
region stimulated (Rosanova et al. 2009). Through inspection
of the frequencies �10 Hz within our data, we see consistency
with those conclusions where we see that posterior occipital
stimulation results in lower frequency activity (�11 Hz) than
vertex stimulation (�13 Hz); however, since that research did
not provide quantitative analysis of the oscillation �10 Hz, we
cannot directly speak to the consistency with the relatively
low-frequency responses we report here. We also note that
their study investigated brain regions that belonged to very
different functional networks (occipital, parietal, and frontal)
while the purpose of our study was to contrast oscillatory
activity elicited by functionally distinct areas of the occipital
cortex within the visual system.

Lastly, it is worth noting that the more stimulation site-
specific oscillations we measured share some characteristics of
a visual-evoked response. Rather than single-pulse TMS cre-
ating a virtual lesion, we suggest that TMS is injecting another
“stimulus” (consistent with the network engaged) into the brain
at specific points in time; this stimulus engages other brain
regions to form functional networks.

Conclusions

TMS-induced oscillations trace the multiple functional
networks associated with the stimulation site. Robust effects
of TMS include global resonances, elicited by any of the
stimulation sites we investigated. Together, these findings
are in agreement with growing evidence that the “virtual
lesion” hypothesis should be revised or abandoned. By
targeting a specific brain network, one may use simultane-
ous neuroimaging or EEG to uncover the functional network
of that brain region and the network for which it belongs,
researchers may use TMS to track modifications in this
network as a function of different cognitive constraints (e.g.,

attention, visual discrimination) or as a function of disease
or aging.
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